等效轴坐标系表示法 - Something TO DO

等效轴坐标系表示法

Something TO DO posted @ 2017年6月10日 23:02 in Robotics , 2784 阅读

首先将坐标系$\{B\}$和一个已知参考坐标系$\{A\}$重合。将$\{B\}$绕矢量$^A\hat{K}$按右手定则旋转$\theta$角度。

等效旋转矩阵的表示形式推导:

 

目标:将向量$v=(x,y,z)$绕一般方向(而不是主轴方向)$\hat{r}$(假设$\hat{r}$是单位向量,如果不是,单位化)旋转$\theta$角度,如下图:

 

首先,将向量$v$分解为两部分:平行于$\hat{r}$的$v_{||}$和垂直于$\hat{r}$的$v_{\bot}$,并且很容易可以得到:

\[v_{||}=(v\cdot \hat{r})\hat{r}\]

\[v=v_{||}+v_{\bot}\]

\[v_{\bot}=v-v_{||}\]

\[v_{\bot}=v-(v\cdot \hat{r})\hat{r}\]

 

假设,$T$是我们所要研究的旋转,我们需要计算$T(v)$:

\[\begin{align}T(v)&=T(v_{||}+v_{\bot})\\
&=T(v_{||})+T(v_{\bot})\end{align}\]

因为$v_{||}$平行于旋转轴$\hat{r}$,所以

\[T(v_{||})=v_{||}\]

可以得到:

\[T(v)=v_{||}+T(v_{\bot})\]

其中,$T(v_{\bot})$是唯一需要求解的量。所以我们建立旋转平面上的两个基向量(如下图),把$v_{\bot}$作为第一个基向量,第二个基向量用

\[\begin{align}w&=\hat{r}\times v_{\bot}\\&=\hat{r}\times v \end{align}\]

 

根据上图,我们可以得到:

\[\begin{align} T(v_{\bot})&= v_{\bot}cos\theta+ w sin\theta\\&= v_{\bot}cos\theta+ (\hat{r}\times v)sin\theta\end{align}\]

因此,

\[\begin{align}T(v)&=v_{||}+T(v_{\bot})\\
&=(v\cdot \hat{r})\hat{r}+ v_{\bot}cos\theta+ (\hat{r}\times v)sin\theta\\
&=(v\cdot \hat{r})\hat{r}+ [v-(v\cdot \hat{r})\hat{r}]cos\theta+(\hat{r}\times v)sin\theta\\
&=(v\cdot \hat{r})\hat{r}+ vcos\theta- (v\cdot \hat{r})\hat{r}cos\theta+ (\hat{r}\times v)sin\theta\\
&=(1-cos \theta)(v\cdot \hat{r})\hat{r}+ v cos\theta+ (\hat{r}\times v)sin\theta\end{align}\]

-------------------------------------------------------------

得到的该式为Rodrigues公式:

\[T(v)=(1-cos \theta)(v\cdot \hat{r})\hat{r}+ v cos\theta+ (\hat{r}\times v)sin\theta\]

-------------------------------------------------------------

至此,经过变换之后的向量形式已经表示出来了。可以分别通过三个基向量来求得等效旋转矩阵的一般形式:

\[p=\begin{vmatrix}1 &0 &0\end{vmatrix}^T \]

将向量$p$绕轴$\hat{r}=[k_x,k_y,k_z]$旋转(这里为了和参考书形式相同,采用$k$表示)之后的形式表示为,

\[\begin{align}
p'&=(1-cos \theta)(p\cdot \hat{r})\hat{r}+ pcos\theta+(\hat{r}\times p)sin\theta\\
&=(1-cos\theta)\left[\left(\begin{matrix}1\\0\\0\end{matrix}\right)\cdot \left(\begin{matrix}k_x\\k_y\\k_z\end{matrix}\right)\right]\left(\begin{matrix}k_x\\k_y\\k_z\end{matrix}\right)+\left(\begin{matrix}1\\0\\0\end{matrix}\right)cos\theta + \left[\left(\begin{matrix}k_x\\k_y\\k_z\end{matrix}\right)\times \left(\begin{matrix}1\\0\\0\end{matrix}\right)\right]sin\theta\\
&=\left[\begin{matrix}k_x^2(1-cos\theta)+cos\theta\\k_xk_y(1-cos\theta)+k_zsin\theta\\k_xk_z(1-cos\theta)-k_ysin\theta\end{matrix}\right]\end{align}\]

类似的,可以将$q=\begin{vmatrix}0 &1 &0\end{vmatrix}^T$,$r=\begin{vmatrix}0 &0 &1\end{vmatrix}^T$经过旋转之后的形式表示为:

\[q'=\left[\begin{matrix}k_xk_y(1-cos\theta)-k_z sin\theta\\k_y^2(1-cos\theta)+cos\theta\\k_yk_z(1-cos\theta)+k_xsin\theta\end{matrix}\right]\]

\[r'=\left[\begin{matrix}k_xk_z(1-cos\theta)+k_y sin\theta\\k_yk_z(1-cos\theta)-k_xsin\theta\\k_z^2(1-cos\theta)+cos\theta\end{matrix}\right]\]

最后,可以得到等效旋转阵的形式:

\[R_r(\theta)=\left[\begin{matrix}k_x^2v\theta+c\theta&k_xk_yv\theta-k_zs\theta&k_xk_zv\theta+k_ys\theta\\k_xk_yv\theta+k_zs\theta&k_y^2v\theta+c\theta&k_yk_zv\theta-k_xs\theta\\k_xk_zv\theta-k_ys\theta&k_yk_zv\theta+k_xs\theta&k_z^2v\theta+c\theta\end{matrix}\right]\]

其中,$c\theta=cos\theta$,$s\theta=sin\theta$,$v\theta=1-cos\theta$,$\theta$是由右手定则确定的,即大拇指指向$\hat{r}$的正方向。

Avatar_small
PSC Result 2022 Comi 说:
2022年9月04日 18:41

Right now there is a press announcement issued by Education Ministry Bangladesh for PSC Exam Result Date 2022, based on the announcement the PSC Result 2022 will be announced on 30th or 31st December 2022 in case of any early announcement the Grade-5 exam result announced on 24th December 2022 respectively for all education boards and all divisions in the country.According to the previous reports, PSC Result 2022 Comilla Board the PSC Result Date 2022 Comilla Board is also last week of December, however, we will update the official result date here after the official announcement by DPE, as per DPE previous five years result from the announcement of this year result will be announced likely on 30th or 31st December 2022.

Avatar_small
WiFi Speed Test 说:
2023年2月04日 14:05

Internet is something we all use every second of our lives now with WiFi gadgets, where you can test the speed at any time, and where notifications, texts, and emails stream down like rain, we should always have the best Internet connection with us. WiFi Speed Test We've talked a lot about the importance of having a decent Internet connection, but now it's time for you to take action and see whether your Internet is what it claims to be. We will use SpeedTest by Ooakla to check your WiFi speed, which is equivalent to your Internet connection speed.

Avatar_small
+2 Exam Pattern 2024 说:
2023年2月10日 16:51

Board of Secondary Education has deferred the Class 12th board Exam should be held from May 2024. The candidates can check the Class 12th Board blueprint Papers from true site. +2 Exam Pattern 2024 The 12th Question Paper 2024 will likewise be reported on class 12th students can take note of the total 12th Exam Pattern 2024. Download the Board Model Paper and Question Paper 2024 as indicated by the 12th Class Model Paper 2024 educational board.


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter
Host by is-Programmer.com | Power by Chito 1.3.3 beta | © 2007 LinuxGem | Design by Matthew "Agent Spork" McGee